Totient maximum

Problem 69

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
nRelatively Primeφ(n)n/φ(n)
2112
31,221.5
41,322
51,2,3,441.25
61,523
71,2,3,4,5,661.1666...
81,3,5,742
91,2,4,5,7,861.5
101,3,7,942.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
from tools import is_prime


def run(limit=1000000):
    num = 2
    res = 1
    while num * res <= limit:
        if is_prime(num):
            res *= num
        num += 1

    return res